Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.3 Trigonometric Substitution - 7.3 Exercises - Page 531: 9

Answer

$$\displaystyle{\int_2^3\frac{1}{\left(x^2-1\right)^\frac{3}{2}}dx=\frac{2}{\sqrt{3}}-\frac{3}{\sqrt{8}}} $$

Work Step by Step

$\displaystyle{I=\int_2^3\frac{1}{\left(x^2-1\right)^\frac{3}{2}}dx}\\$ $\displaystyle \left[\begin{array}{ll} x=\sec\theta & x^2=\sec^2\theta \\ & \\ \frac{dx}{d\theta}=\sec\theta\tan\theta & dx=\sec\theta\tan\theta\ d\theta \end{array}\right]$ Integration by substitution $\displaystyle{I=\int_{\frac{\pi}{3}}^{1.23}\frac{1}{\left(\sec^2x-1\right)^\frac{3}{2}}\sec\theta\tan\theta\ d\theta}\\ \displaystyle{I=\int_{\frac{\pi}{3}}^{1.23}\frac{1}{\tan^3\theta}\sec\theta\tan\theta\ d\theta}\\ \displaystyle{I=\int_{\frac{\pi}{3}}^{1.23}\frac{\cos\theta}{\sin^2\theta}\ d\theta}\\ \displaystyle{I=\int_{\frac{\pi}{3}}^{1.23}\cot\theta cosec\theta\ d\theta}\\ \displaystyle{I=\left[-cosec\theta\right]_{\frac{\pi}{3}}^{1.23}}\\ \displaystyle{I=\left[-\frac{1}{\sin\theta}\right]_{\frac{\pi}{3}}^{1.23}}\\$ $\sin\theta=\frac{\sqrt{ x^2-1}}{x}\\ $ $\displaystyle{I=\left[-\frac{x}{\sqrt{ x^2-1}}\right]_{2}^{3}+C}\\ \displaystyle{I=-\frac{3}{\sqrt{ 3^2-1}}+\frac{2}{\sqrt{ 2^2-1}}}\\ \displaystyle{I=\frac{2}{\sqrt{3}}-\frac{3}{\sqrt{8}}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.