Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.1 Integration by Parts - 7.1 Exercises - Page 518: 69

Answer

$2-e^{-t}(t^2+2t+2) $ meters

Work Step by Step

Integration by parts formula: $\displaystyle \int fg' $ $\displaystyle dx = fg-\int f'g$ $dx$ Distance $= \displaystyle \int_0^t|v(t)|dt\quad $but since $v(t)$ > 0 for $t > 0$ we can drop the absolute value $\displaystyle \int_0^tv(t)dt = \displaystyle \int_0^tt^2e^{-t}dt$ ____________________________ Let $\displaystyle f = t^2$ and $\displaystyle g' = e^{-t}$ thus $\displaystyle f' = 2t$ and $\displaystyle g = -e^{-t}$ ____________________________ $\displaystyle \int_0^tt^2e^{-t}dt = [t^2(-e^{-t})]_0^t-\int_0^t(2t)(-e^{-t})dt$ $\displaystyle [t^2(-e^{-t}) - ((0)^2(-e^0))] + 2\int_0^tte^{-t}dt$ $\displaystyle [-t^2e^{-t} -0]+ 2[(t[-e^{-t}])|_0^t-\int_0^t-e^{-t}(1)dt]$ $\displaystyle -t^2e^{-t} + 2[(-te^{-t})|_0^t+\int_0^te^{-t}dt]$ $\displaystyle -t^2e^{-t} + 2([-te^{-t} - (-(0)e^0)] + [-e^{-t}]_0^t)$ $\displaystyle -t^2e^{-t} + 2([-te^{-t} + 0]+[-e^{-t} - (-e^0)])$ $\displaystyle -t^2e^{-t} + 2(-te^{-t}-e^{-t} - (-1))$ $\displaystyle -t^2e^{-t} + -2te^{-t}-2e^{-t} + 2(1)$ $2-e^{-t}(t^2+2t+2) $ meters
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.