Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2 Exponential Functions and Their Derivatives - 6.2 Exercises - Page 420: 87



Work Step by Step

Let $u=1+e^x$. Then $du=e^x dx$. $\int e^x\sqrt{1+e^x}dx$ $=\int \sqrt{1+e^x}e^xdx$ $=\int \sqrt{u}du$ $=\int u^\frac{1}{2}du$ $=\frac{u^\frac{3}{2}}{\frac{3}{2}}+C$ $=\frac{2}{3}u^\frac{3}{2}+C$ $=\frac{2}{3}(1+e^x)^\frac{3}{2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.