Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.2 Exponential Functions and Their Derivatives - 6.2 Exercises - Page 419: 55



Work Step by Step

$y=e^x+e^{-x/2}$ By the chain rule: $y'=e^x+e^{-x/2}*\frac{d}{dx}(-\frac{x}{2})$ $y'=e^x-\frac{1}{2}e^{-x/2}$ $y''=e^x-\frac{1}{2}e^{-x/2}*\frac{d}{dx}(-\frac{x}{2})$ $y''=e^x+\frac{1}{4}e^{-x/2}$ $2y''-y'-y$ $=2(e^x+\frac{1}{4}e^{-x/2})-(e^x-\frac{1}{2}e^{-x/2})-(e^x+e^{-x/2})$ $=2e^x+\frac{1}{2}e^{-x/2}-e^x+\frac{1}{2}e^{-x/2}-e^x-e^{-x/2}$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.