Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 5 - Applications of Integration - 5.2 Volumes - 5.2 Exercises - Page 375: 32


a.) $V=3.70110$ b.) $V=6.16850$

Work Step by Step

a.) $\displaystyle{A(x)=\pi\left(\cos^2x\right)^2}\\ \displaystyle{A(x)=\pi\left(\cos^4x\right)}$ $\begin{aligned} V &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} A(x) \ d x \\ V &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \pi\left(\cos^4x\right) \ d x \\ V &=\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^4x\ dx \\ V &=2\pi \int_{0}^{\frac{\pi}{2}} \cos^4x\ dx \\ V&=3.70110 \end{aligned}$ b.) $\displaystyle{A(x)=\pi\left(1-0\right)^2-\pi\left(1-\cos^2x\right)^2}\\ \displaystyle{A(x)=\pi\left(2\cos^2x-\cos^4x\right)}$ $\begin{aligned} V &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} A(x) \ d x \\ V &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \pi\left(2\cos^2x-\cos^4x\right) \ d x \\ V &=\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2\cos^2x-\cos^4x\ dx \\ V &=2\pi \int_{0}^{\frac{\pi}{2}} 2\cos^2x-\cos^4x\ dx \\ V&=6.16850 \end{aligned}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.