Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.4 Indefinite Integrals and the Net Change Theorem - 4.4 Exercises - Page 337: 34

Answer

$\displaystyle \frac{1}{2}$

Work Step by Step

$\displaystyle \int_{0}^{π/3}\frac{\sin(\theta)+\sin(\theta)\tan^2(\theta)}{\sec^2(\theta)} d\theta$ We can manipulate the fraction to make it easier to integrate. $\displaystyle \int_{0}^{π/3}\frac{\sin(\theta)+\sin(\theta)[\frac{\sin^2(\theta)}{\cos^2(\theta)}]}{\frac{1}{\cos^2(\theta)}} d\theta$ $\displaystyle \int_{0}^{π/3} \cos^2(\theta)[\sin(\theta)+\sin(\theta)[\frac{\sin^2(\theta)}{\cos^2(\theta)}]]d\theta$ $\displaystyle \int_{0}^{π/3} \sin(\theta)\cos^2(\theta)+\sin^3(\theta)d\theta$ Use the trigonometric identity $\quad\sin^2(\theta)+\cos^2(\theta)=1\quad\rightarrow\quad \sin^2(\theta)=1-\cos^2(\theta)$ $\displaystyle \int_{0}^{π/3} \sin(\theta)\cos^2(\theta)+\sin(\theta)(1-\cos^2(\theta))d\theta$ $\displaystyle \int_{0}^{π/3} \sin(\theta)\cos^2(\theta)+\sin(\theta)-\sin(\theta)\cos^2(\theta)d\theta$ The two $\quad\sin(\theta)\cos^2(\theta)\quad$ cancel out and we are left with: $\displaystyle \int_{0}^{π/3} \sin(\theta)d\theta$ $-\cos(\theta)|_0^{π/3}$ $\displaystyle -\cos(\frac{π}{3})-[-\cos(0)]$ $\displaystyle -\frac{1}{2}+1$ $\displaystyle \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.