Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.2 The Derivative as a Function - 2.2 Exercises - Page 129: 61

Answer

Prove that: (a) The derivative of an even function is an odd function. If $f$ is even, then $$ \begin{aligned} f^{\prime}(-x) &=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f[-(x-h)]-f(-x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}\\ &=-\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h} \quad[\text { let } \Delta x=-h] \\ &=-\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=-f^{\prime}(x) \end{aligned}$$ Therefore, $f^{\prime} $ is odd. (b)The derivative of an odd function is an even function. If $f$ is odd, then $$ \begin{aligned} f^{\prime}(-x) &=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f[-(x-h)]-f(-x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{-f(x-h)+f(x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{-h} \quad[\text { let } \Delta x=-h] \\ &=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=f^{\prime}(x) \end{aligned} $$ Therefore, $f^{\prime} $ is even.

Work Step by Step

Prove that: (a) The derivative of an even function is an odd function. If $f$ is even, then $$ \begin{aligned} f^{\prime}(-x) &=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f[-(x-h)]-f(-x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}\\ &=-\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h} \quad[\text { let } \Delta x=-h] \\ &=-\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=-f^{\prime}(x) \end{aligned}$$ Therefore, $f^{\prime} $ is odd. (b)The derivative of an odd function is an even function. If $f$ is odd, then $$ \begin{aligned} f^{\prime}(-x) &=\lim _{h \rightarrow 0} \frac{f(-x+h)-f(-x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f[-(x-h)]-f(-x)}{h} \\ &=\lim _{h \rightarrow 0} \frac{-f(x-h)+f(x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{-h} \quad[\text { let } \Delta x=-h] \\ &=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=f^{\prime}(x) \end{aligned} $$ Therefore, $f^{\prime} $ is even.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.