Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 17 - Second-Order Differential Equations - 17.4 Series Solutions - 17.4 Exercises - Page 1220: 7

Answer

$y=C_0-C_1 \ln (1-x)$

Work Step by Step

We have $\Sigma^\infty_{n=2}n(n-1) C_{n} x^{n-2}+\Sigma^\infty_{n=1}n c_n x^{n-1}=0$ $\implies \Sigma^\infty_{n=1}n(n-1)c_{n}x^{n-1}-\Sigma^\infty_{n=1}(n+1)n c_{n+1}x^{n-1}+\Sigma^\infty_{n=1}n c_{n}x^{n-1}=0$ This gives: $c_{n+1}=\dfrac{n}{n+1}c_n$ $C_{2} =\dfrac{C_{1}}{2}$; when $n=2$ $C_{3} =\dfrac{C_{1}}{3}$; when $n=3$ $\implies C_{n} = \dfrac{1}{n}C_n$ This implies that $y= \dfrac{(-1)^n}{2 \cdot 4 \cdot 6...(2n)} \times C_0+ \dfrac{(-1)^n}{3 \cdot 5 \cdot 7...(2n+1)} \times C_1$ Thus, w ehave $y= C_0+C_1 \Sigma^\infty_{n=1} \dfrac{x^n}{n!}$ or, $y=C_0-C_1 \ln (1-x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.