Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - Review - Exercises - Page 1190: 35

Answer

$4 \pi$

Work Step by Step

Apply the Divergence's Theorem: $\iint_S F\cdot dS=\iiint_E div F dV$ Here, $S$ shows that the closed surface with $E$ as the region inside that surface. $div(F)=3(x^2+y^2+z^2)=3(r^2+z^2)$ For the cylindrical coordinates: $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1; 0 \leq z \leq 2$ But $F=xi+yj+zk$ or, $div (F)=1+1+1=3$ and $\iiint_E div F dV=3 \iiint_E dV=(3)(\dfrac{4 \pi}{3})=4 \pi$ Also, $F(r(\theta \phi))=\sin \phi \cos \theta i+\sin \phi \sin \theta j+\cos \phi k$ Thus, $\iint_S F\cdot dS=\sin \phi(\sin^2 \phi \cos^2 \theta+\sin^2 \phi \sin^2 \theta+\cos^2 \phi)dA$ or, $\iint_D [\sin \phi] dA=\int_0^{\pi} \int_0^{2 \pi} [\sin \phi] d\theta d \phi=\int_0^{\pi} [\sin \phi] d\phi \int_0^{2 \pi} d\theta$ or, $[-\cos \phi]_0^{\pi}[\theta]_0^{2\pi}=(-\cos \pi +\cos 0)(2 \pi-0)$ Divergence's Theorem: $\iint_S F\cdot dS=\iiint_E div F dV$ Thus, we have $\iint_S F\cdot dS=\iiint_E div F dV=4 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.