Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - Review - Exercises - Page 1189: 23

Answer

$\int_Cf_y dx-f_x dy$ is independent of the path in any simple region $D$

Work Step by Step

Consider the Green's Theorem: $\int_C fdx+g dy=\iint_D (\dfrac{\partial g}{\partial x}-\dfrac{\partial f}{\partial y})dA$ Here, $D$ is the region enclosed inside the counter-clockwise oriented loop $C$. Consider $\nabla^2 f=0$ and $\nabla(\nabla f)=0$ and $\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}=0$ Now, we have $\int_Cf_y dx+(-f_x) dy=\iint_D (\dfrac{\partial f_x}{\partial x}-\dfrac{\partial (-f_y)}{\partial y})dA$ or, $=\iint_D(\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2})dA $ or, $\int_Cf_y dx-f_x dy=\iint_D (0)dA=0$ It has been proved that the integral $\int_Cf_y dx-f_x dy$ is independent of the path in any simple region $D$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.