Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.7 Surface Integrals - 16.7 Exercises - Page 1172: 1


$ \approx -6.93$

Work Step by Step

When the surface is orientable then the flux through a surface is defined as: $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ is the unit vector. Since, $\iint_S f(x,y,z) dS \approx \Sigma_{i=1}^n f(\overline(x), \overline(y), \overline(z)) AS_i$ Here, $\iint_S F(x,y,z) dS =4[f(0,0,1) +f(0,1,0) +f(1,0,0)+f(-1,0,0) +f (0,-1,0) +f(0,0,-1)]$ This gives; $\iint_S F(x,y,z) dS =4[-0.9899925-0.41614684+0.54030231+0.54030231-0.41614684-0.9899925]$ Hence, $\iint_S F(x,y,z) dS \approx -6.93$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.