Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1149: 18


$f(x,y,z)=e^{x} \sin yz+K$; Conservative

Work Step by Step

The vector field $F$ is conservative when $curl F=0$ When $F=ai+bj+ck$, then we have $curl F=[c_y-b_z]i+[a_z-c_z]j+[b_x-a_y]k$ Now, $curl F=[(e^{x}\cos yz-yze^{x}\sin yz)-(e^{x} \cos yz-yze^{x} \sin yz)]i+[(ye^{x} \cos yz-ye^{x} \cos yz)]j+[(ze^{x} \cos yz-ze^{x} \cos yz)-k=0$ Thus, we have the vector field $F$ is conservative. Consider $f(x,y,z)=e^{x} \sin yz+g(y,z) \implies f_y=z e^{x} \cos yz+g_y $ and So, $g'(y)=0$ Thus, we have $g_y=h(z)$ and $f_y=z (e^{x}) \cos (yz) $ Now, $f(x,y,z)=(e^{x}) \sin (yz)+h(z)$ Thus, $f_z=y (e^{x}) \cos (yz)+h'(z) \implies h'(z)=0$ Hence, we get $f(x,y,z)=e^{x} \sin yz+K$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.