Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.9 Change of Variables in Multiple Integrals - 15.9 Exercises - Page 1100: 18

Answer

$\dfrac{4 \sqrt 3 \pi}{3}$

Work Step by Step

$\iint_R (x^2-xy+y^2) dA=\iint_{D}(2u^2+2v^2)|J| dA$ We have $|J| =\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=\begin{vmatrix} \sqrt 2&-\sqrt{\dfrac{2}{3}}\\\sqrt 2&\sqrt{\dfrac{2}{3}}\end{vmatrix}=\dfrac{4 \sqrt 3}{3}$ As we are given that $u^2+v^2 \leq 1$ Let us consider that $u =r \cos \theta$ and $v=r \sin \theta$ $\iint_R (x^2-xy+y^2) dA=\iint_{D}(2u^2+2v^2)\dfrac{4 \sqrt 3}{3} dA$ or, $=(2) \int_0^{2 \pi} \int_0^1 r^2 (\dfrac{4 \sqrt 3}{3}) r dr d \theta$ or, $=(\dfrac{8 \sqrt 3}{3}) \int_0^{2 \pi} [ \dfrac{1}{4} r^4]_0^1 d \theta$ or, $=\dfrac{4 \sqrt 3 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.