Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.2 Double Integrals over General Regions - 15.2 Exercises - Page 1048: 5



Work Step by Step

$\int _0^1\int _0^{s^2}\cos \left(x^3\right)dtds$ $\int _0^{x^2}\cos \left(s^3\right)dt=s^2\cos \left(s^3\right)$ Note: $\int \:x^2\cos \left(x^3\right)dx=\frac{1}{3}\sin \left(x^3\right)+C$ So, $\int _0^1s^2\cos \left(s^3\right)dx=\frac{\sin \left(1\right)}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.