Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.4 Tangent Planes and Linear Approximations - 14.4 Exercises - Page 975: 38


$ -8.83 k Pa$

Work Step by Step

Write the differential form such as: $dP=\dfrac{\partial P}{\partial V} dV + \dfrac{\partial P}{\partial T} dT$ $dP=\dfrac{-8.31 T}{V^2} \times dV + \dfrac{8.31}{V} dT$ and $\triangle P \approx \dfrac{-8.31 T}{V^2} \times \triangle V + \dfrac{8.31 T}{V} \times \triangle T$ Need to plug the given values. $\triangle P \approx \dfrac{-8.31 \times 310}{(12)^2} ((0.3)) + (\dfrac{8.31}{12}) \times (-5) \approx -8.83 k Pa$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.