Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.2 Limits and Continuity - 14.2 Exercises - Page 950: 19


$\sqrt 3$

Work Step by Step

Given: $\lim\limits_{(x,y,z) ) \to (\pi,0,\frac{1}{3})} e^{y^{2}}tanxz$ Substitute $x=\pi,y=0,z=\frac{1}{3}$ $=\lim\limits_{(x,y,z) ) \to (\pi,0,\frac{1}{3})} e^{0^{2}}tan\frac{\pi}{3}$ $=1\times \sqrt 3$ $=\sqrt 3$ Hence, $\lim\limits_{(x,y,z) ) \to (\pi,0,\frac{1}{3})} e^{y^{2}}tanxz=\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.