Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - Review - Exercises - Page 922: 2

Answer

a) $t \in (-1,0) \cup (0,2]$ b) $\lim\limits_{t \to 0} r(t)=\lt \sqrt 2, 1, 0 \gt$ c) $r'(t) =\lt \dfrac{-1}{2\sqrt {2-t}},\dfrac{te^t-e^t+1}{t^2}, \dfrac{1}{t+1} \gt$

Work Step by Step

a) Domain of $x$ component: $\sqrt{2-t}$ domain which is $t \in (-\infty, 2]$ Also, Domain of $y$ component: $\dfrac{e^t-1}{t}$ domain which is $t \in (-\infty,0) \cup (0, \infty)$ Domain of $z$ component: $ln(1+t)$ domain which is $t \in (-1, \infty)$ Thus, we get $t \in (-1,0) \cup (0,2]$ b) Here, $\lim\limits_{t \to 0}\sqrt {2-t}=\sqrt {2-0}=\sqrt 2$ $\lim\limits_{t \to 0} =\lim\limits_{t \to 0} \dfrac{e^t}{t}=1\\ \lim\limits_{t \to 0} \ln(1+t)=\ln (1+0)=0$ Hence, we get $\lim\limits_{t \to 0} r(t)=\lt \sqrt 2, 1, 0 \gt$ c) After taking the derivative of each component we get $r'(t) =\lt \dfrac{-1}{2\sqrt {2-t}},\dfrac{te^t-e^t+1}{t^2}, \dfrac{1}{t+1} \gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.