Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - 13.1 Vector Functions and Space Curves - 13.1 Exercises - Page 894: 38

Answer

See images:

Work Step by Step

We are given a parametric curve: $r(t) $ In geogebra: Curve$( \sin(t), \sin(2t), \cos(4t), t, 0, 2\pi)$ We project onto the three coordinate planes: $xy$ plane $(z=0)$ $r(t)= <\sin \sin>$ In geogebra: Curve$( \sin(t), \sin(2t), 0, t, 0, 2\pi)$ $xz$ plane $(y=0)$ $r(t)= <\sin \cos>$ In geogebra: Curve$( \sin(t), 0, \cos(4t), t, 0, 2\pi)$ $yz$ plane $(x=0)$ $r(t)= <0,\space \sin(2t),\space \cos (4t)>$ In geogebra: Curve$( 0, \sin(2t), \cos(4t), t, 0, 2\pi)<\sin><\sin>$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.