Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.7 Strategy for Testing Series - 11.7 Exercises - Page 786: 33

Answer

Convergent

Work Step by Step

Apply the Root Test: $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}$ $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^2}}$ $=\lim\limits_{n\to\infty}\left(\frac{n}{n+1}\right)^{\frac{n^2}{n}}$ $ =\lim\limits_{n\to\infty}\left(\frac{n}{n+1}\right)^{n}$ Divide the top and bottom by the highest power of $n$. $\lim\limits_{n\to\infty}\left(\frac{1}{1+\frac{1}{n}}\right)^{n}=\frac{1}{\lim\limits_{n\to\infty}(1+\frac{1}{n})^n}$ Since, $e=\lim\limits_{n\to \infty}(1+\frac{1}{n})^n$ Therefore, $\frac{1}{\lim\limits_{n\to\infty}(1+\frac{1}{n})^n}=\frac{1}{e}<1$ Hence, the series is convergent by the Root Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.