Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.6 Absolute Convergence and the Radio and Root Tests - 11.6 Exercises - Page 783: 39

Answer

The series is divergent.

Work Step by Step

Use the Ratio Test:$\lim\limits_{n \to \infty}\Big|\frac{a_{n+1}}{a_n}\Big|$. Use the recursive definition $ a_{n+1}=\frac{5n+1}{4n+3}a_n$. Using substitution, $\lim\limits_{n \to \infty}\Big|\frac{\frac{5n+1}{4n+3}a_n}{a_n}\Big|$. The $a_n$ terms cancel, and we are left with $\lim\limits_{n \to \infty}\Big|\frac{5n+1}{4n+3}\Big|=\frac{5}{4}>1$. Since this limit is greater than one, the $\Sigma a_n$ is Divergent by the Ratio Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.