Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 92: 14


$p$ is continuous at $a=1$.

Work Step by Step

A function $f$ is continuous at a number $a$ if $\displaystyle \lim_{x\rightarrow a}f(x)=f(a)$ ------------- $\displaystyle \lim_{v\rightarrow 1}p(v)=\lim_{v\rightarrow 1}2\sqrt{3v^{2}+1}\quad $...The limit of a constant times a function $=2\displaystyle \lim_{v\rightarrow 1}\sqrt{3v^{2}+1}$ ... $\displaystyle \lim_{x\rightarrow a}\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x\rightarrow a}f(x)}$ where $n$ is a positive integer $=2\sqrt{\lim_{v\rightarrow 1}(3v^{2}+1)} \quad $...The limit of a sum $=2\sqrt{\lim_{v\rightarrow 1}3v^{2}+\lim_{v\rightarrow 1}1}\quad $...The limit of a constant times a function $=2\sqrt{3\lim_{v\rightarrow 1}v^{2}+\lim_{v\rightarrow 1}1}\quad $...evaluate $=2\sqrt{3(1)^{2}+1}$ $=2\sqrt{4}$ $=4$ $p(1)=2\sqrt{3\cdot 1^{2}+1}=2\cdot\sqrt{4}=4= \displaystyle \lim_{v\rightarrow 1}p(v)$ By the definition, $p$ is continuous at $a=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.