Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises - Page 72: 65

Answer

\[a=15\] and \[\lim_{x\rightarrow -2}\frac{3x^2+ax+a+3}{x^2+x-2}=-1\]

Work Step by Step

Let \[L=\lim_{x\rightarrow -2}\frac{3x^2+ax+a+3}{x^2+x-2}\] Since \[\lim_{x\rightarrow -2}(x^2+x-2)=(-2)^2+(-2)-2=0\] So denominator of $L$ tends to $0$ as $x\rightarrow -2$ so $L$ can exist only if \[\lim_{x\rightarrow -2}(3x^2+ax+a+3)=0\] \[\Rightarrow 3(-2)^2+a(-2)+a+3=12-2a+a+3=15-a=0\] \[Rightarrow a=15\] \[L=\lim_{x\rightarrow -2}\frac{3x^2+15x+15+3}{x^2+x-2}\] \[L=\lim_{x\rightarrow -2}\frac{3(x^2+5x+6)}{x^2+2x-x-2}\] \[L=\lim_{x\rightarrow -2}\frac{3(x^2+5x+6)}{(x+2)(x-1)}\] \[L=\lim_{x\rightarrow -2}\frac{3(x+2)(x+3)}{(x+2)(x-1)}\] \[L=\lim_{x\rightarrow -2}\frac{3(x+3)}{x-1}\] \[L=\frac{3(-2+3)}{-2-1}=-1\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.