Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 497: 25

Answer

$$T_4= (x-1)+\frac{1}{2}(x-1)^{2}-\frac{1}{6}(x-1)^{3}+\frac{1}{12}(x-1)^{4}$$

Work Step by Step

Given $$f(x)=x \ln (x), \quad T_{4}, \quad a=1$$ Since \begin{align*} f(x)&=x \ln (x)\ \ \ \ \ \ \ &f(1)=0\\ f'(x)&= 1+ \ln (x)\ \ \ \ \ \ \ &f(1)=1\\ f''(x)&=\frac{1}{x}\ \ \ \ \ \ \ &f(1)=1\\ f'''(x)&=\frac{-1}{x^2}\ \ \ \ \ \ \ &f(1)=-1\\ f^{(4)}(x)&=\frac{2}{x^3}\ \ \ \ \ \ \ &f(1)=2 \end{align*} Then \begin{aligned} T_{4}(x)&= f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}++\frac{f^{(4)}(a)}{4 !}(x-a)^{4} \\ &= (x-1)+\frac{1}{2 !}(x-1)^{2}-\frac{1}{3 !}(x-1)^{3}+\frac{2}{4 !}(x-1)^{4}\\ &=(x-1)+\frac{1}{2}(x-1)^{2}-\frac{1}{6}(x-1)^{3}+\frac{1}{12}(x-1)^{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.