Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - Chapter Review Exercises - Page 496: 10

Answer

$$\pi \left[\frac{9 \sqrt{5}}{4} -\frac{1}{8} \ln (2+\sqrt{5})\right]\approx 15.23$$

Work Step by Step

Given $$y=\frac{1}{2} x^{2}, \quad[0,2]$$ \begin{align*} y'&= x \\ 1+y'^2&= 1+x^{2} \end{align*} Then the surface area is given by \begin{align*} S&=2\pi \int_{a}^{b} y\sqrt{1+y'^2}dx\\ & =2 \pi \int_{0}^{2} \frac{1}{2} x^2 \sqrt{1+x^{2} } d x\\ &= \pi \int_{0}^{2}x^2 \sqrt{1+x^{2} } d x \end{align*} Use the rule $$\int u^{2} \sqrt{a^{2}+u^{2}} d u=\frac{u}{8}\left(a^{2}+2 u^{2}\right) \sqrt{a^{2}+u^{2}}-\frac{a^{4}}{8} \ln (u+\sqrt{a^{2}+u^{2}})+C$$ Then \begin{align*} S &= \pi \int_{0}^{2}x^2 \sqrt{1+x^{2} } d x \\ &=\pi \left[ \frac{x}{8}\left(1+2 x^{2}\right) \sqrt{1+x^{2}}-\frac{1}{8} \ln (x+\sqrt{x+x^{2}})\right]\bigg|_{0}^{2}\\ &= \pi \left[\frac{9 \sqrt{5}}{4} -\frac{1}{8} \ln (2+\sqrt{5})\right] \approx 15.23 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.