Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 29

Answer

$x \in[1,2.9]$

Work Step by Step

Given $$f(x) =\sqrt{x}=x^{1/2},\ \ \ a=1 $$ Since \begin{array}{rlrl} f(x) & =x^{1 / 2} & & f(1)=1 \\ f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} & & f^{\prime}(1)=\frac{1}{2} \\ f^{\prime \prime}(x) & =-\frac{1}{4} x^{-3 / 2} & f^{\prime \prime}(1) & =-\frac{1}{4} \\ f^{\prime \prime \prime}(x) & =\frac{3}{8} x^{-5 / 2} & f^{\prime \prime \prime}(1) & =\frac{3}{8} \end{array} Then \begin{aligned} T_{3}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3} \\ &= 1+\frac{1}{2}(x-1)-\frac{1}{4 \cdot 2 !}(x-1)^{2}+\frac{3}{8 \cdot 3 !}(x-1)^{3}\\ &=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3} \end{aligned} Since $$|f(x)-T_3(x)|= |\sqrt{x}-1-\frac{1}{2}(x-1)+\frac{1}{8}(x-1)^{2}-\frac{1}{16}(x-1)^{3}|$$ From the following graph, we have for $x \in[1,2.9]$ that the error does not exceed $0.25 .$ The error at $x=3$ appears to just exceed $0.25$
Small 1586001946
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.