Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 468: 17

Answer

$$ 6$$

Work Step by Step

By implicit differentiation \begin{aligned} &\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0\\ &y^{\prime}=-\frac{x^{-1 / 3}}{y^{-1 / 3}}=-\frac{y^{1 / 3}}{x^{1 / 3}} \end{aligned} and \begin{aligned} s=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x &=\int_{0}^{1} \sqrt{\frac{1}{x^{2 / 3}}} d x \\ &=\int_{0}^{1} \frac{1}{x^{1 / 3}} d x \\ &=\left[\frac{3}{2} x^{2 / 3}\right]_{0}^{1} \\ &=\frac{3}{2} \end{aligned} The total arc length is therefore $4 · \frac{3}{2} = 6.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.