Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.3 Trigonometric Substitution - Exercises - Page 410: 41

Answer

$$\frac{1}{2}[(x-2) \sqrt{x^{2}-4 x+3}-\ln |\sqrt{x^{2}-4 x+3}+x-2|]+C$$

Work Step by Step

Given $$\int \sqrt{x^{2}-4 x+3} d x$$ Since \begin{align*} x^{2}-4 x+3&=(x-2)^{2}-4 +3\\ &=(x-2)^{2}-1 \end{align*} Let $$x-2= \sec u\ \ \ \ \ \ dx=\sec u\tan u du $$ then \begin{align*} \int \sqrt{x^{2}-4 x+3} d x&=\int \sqrt{(x-2)^{2}-1} d x\\ &=\int \sqrt{ \sec^2 u-1} \sec u\tan u du\\ &= \int \tan^2 u\sec udu \\ &= \int (\sec^3 u-\sec u)du \end{align*} Use $$\int \sec ^{3} u d u=\frac{1}{2} \sec u \tan u+\frac{1}{2} \ln |\sec u+\tan u|+C $$ Hence \begin{align*} \int \sqrt{x^{2}-4 x+3} d x&=\int \sqrt{(x-2)^{2}-1} d x\\ &=\int \sqrt{ \sec^2 u-1} \sec u\tan u du\\ &= \int \tan^2 u\sec udu \\ &= \int (\sec^3 u-\sec u)du \\ &= \frac{1}{2} \sec u \tan u+\frac{1}{2} \ln |\sec u+\tan u|+\ln|\sec u+\tan u| +C\\ &= \frac{1}{2} \sec u \tan u-\frac{1}{2} \ln |\sec u+\tan u| +C\\ &= \frac{1}{2}[(x-2) \sqrt{x^{2}-4 x+3}-\ln |\sqrt{x^{2}-4 x+3}+x-2|]+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.