Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Exercises - Page 404: 60



Work Step by Step

Given $$ \int_{0}^{\pi}\sin x\sin 3xdx$$ Use $$ \sin (a x) \sin (b x)=\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) $$ Then \begin{align*} \int_{0}^{\pi}\sin x\sin 3xdx&=\frac{1}{2}\int_{0}^{\pi}(\cos 2x -\cos 4x)dx\\ &=\frac{-1}{2}\left(\frac{1}{2}\sin x-\frac{1}{7}\sin4 x\right)\bigg|_{0}^{\pi} \\ &=0 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.