Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - Chapter Review Exercises - Page 388: 122

Answer

See explanation

Work Step by Step

$$\lim_{x \to 0}\frac{f(x)}{g(x)}=\frac{f(0)}{g(0)}=\frac{0}{g(0)}$$ Since $g$ is the inverse of $f$ it follows: $$g(f(x))=x$$ $$g(f(0))=0$$ $$g(0)=0$$ so: $$\lim_{x \to 0}\frac{f(x)}{g(x)}=\frac{f(0)}{g(0)}=\frac{0}{g(0)}=\frac{0}{0}$$ it is an indeterminate form. Using the l'Hospital's rule it follows: $$\lim_{x \to 0}\frac{f(x)}{g(x)}=\lim_{x \to 0}\frac{f'(x)}{g'(x)}=\frac{f'(0)}{g'(0)}$$ we have: $$f(g(x))=x$$ Differentitate both sides and using the chain rule it follows: $$g'(x)f'(g(x))=1$$ $$g'(0)f'(g(0))=1$$ $$g'(0)f'(g(0))=1$$ $$g'(0)f'(0)=1$$ $$g'(0)=\frac{1}{f'(0)}$$ so: $$\lim_{x \to 0}\frac{f(x)}{g(x)}=\lim_{x \to 0}\frac{f'(x)}{g'(x)}=\frac{f'(0)}{g'(0)}=\frac{f'(0)}{\frac{1}{f'(0)}}=f'(0) \cdot f'(0)=(f'(0))^{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.