Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.9 Related Rates - Exercises - Page 161: 33

Answer

$-\frac{1}{8}$

Work Step by Step

Using the chain rule it follows that: $\frac{d \theta}{dt}=\frac{d \theta}{dx}\cdot \frac{dx}{dt}$ $\frac{d \theta}{dt}|_{x=20}=\frac{d \theta}{dx}|_{x=20}\cdot 5$ Find $\frac{d \theta}{dx}|_{x=20}$. Since the triangle is right it follows that: $$\tan(\theta)=\frac{20}{x}$$ Differentiate both sides it follows: $$(\tan(\theta))'=\left(\frac{20}{x}\right)'$$ Use the chain rule it follows: $$\frac{d\theta}{dx}\cdot \frac{1}{\cos^{2}(\theta)}=\left(\frac{20}{x}\right)'$$ $$\frac{d\theta}{dx}\cdot \frac{1}{\cos^{2}(\theta)}=\frac{-20}{x^{2}}$$ $$\frac{d\theta}{dx}=\frac{-20}{x^{2}}\cdot \cos^{2}(\theta)$$ Since the triangle is right it follows that: $$\cos(\theta)=\frac{x}{\sqrt{x^{2}+20^{2}}}$$ so: $$\frac{d\theta}{dx}=\frac{-20}{x^{2}}\cdot \left(\frac{x}{\sqrt{x^{2}+20^{2}}}\right)^{2}$$ $$\frac{d\theta}{dx}=\frac{-20}{x^{2}}\cdot \frac{x^{2}}{x^{2}+20^{2}}$$ $$\frac{d\theta}{dx}=-20\cdot \frac{1}{x^{2}+20^{2}}$$ $$\frac{d\theta}{dx}|_{x=20}=-20\cdot \frac{1}{20^{2}+20^{2}}=-\frac{1}{40}$$ so: $\frac{d \theta}{dt}|_{x=20}=-\frac{1}{40}\cdot 5=-\frac{1}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.