Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 153: 44

Answer

The equation of the tangent line is $y=\dfrac{4x}{5}+\dfrac{12}{15}$.

Work Step by Step

Firstly differentiate $x^3 + y^3 = 3xy$ with respect to $x$ using product rule and chain rule. We get, $3x^2+3y^2\dfrac{dy}{dx}=3x\dfrac{dy}{dx}+3y\dfrac{dx}{dx}$ $\implies 3x^2+3y^2\dfrac{dy}{dx}=3x\dfrac{dy}{dx}+3y$ Now solve for $\dfrac{dy}{dx}$ as follows. $3x^2+3y^2\dfrac{dy}{dx}=3x\dfrac{dy}{dx}+3y$ $\implies 3y^2\dfrac{dy}{dx}-3x\dfrac{dy}{dx}=3y-3x^2$ $\implies (3y^2-3x)\dfrac{dy}{dx}=3y-3x^2$ $\implies \dfrac{dy}{dx}=\dfrac{3y-3x^2}{3y^2-3x}$ Now substitute $x=\dfrac{2}{3}$ and $y=\dfrac{4}{3}$ in the above equation to find the slope of the tangent line at $\left(\dfrac{2}{3},\dfrac{4}{3}\right)$. $\dfrac{dy}{dx}=\dfrac{3\times\left(\dfrac{4}{3}\right)-3\times\left(\dfrac{2}{3}\right)^2}{3\times\left(\dfrac{4}{3}\right)^2-3\times\left(\dfrac{2}{3}\right)}=\dfrac{3\times\left(\dfrac{4}{3}\right)-\left(\dfrac{4}{3}\right)}{\left(\dfrac{16}{3}\right)-\left(\dfrac{6}{3}\right)}=\dfrac{2\times\left(\dfrac{4}{3}\right)}{\left(\dfrac{10}{3}\right)}=\dfrac{\left(\dfrac{8}{3}\right)}{\left(\dfrac{10}{3}\right)}\hspace{24px}=\dfrac{8}{10}=\dfrac{4}{5}$ Now use the slope-intercept form of the tangent line. That is, $y-\dfrac{4}{3}=\dfrac{4}{5}\left(x-\dfrac{2}{3}\right)$ Now simplify to get the equation of the tangent line at $\left(\dfrac{2}{3},\dfrac{4}{3}\right)$. We get, $y-\dfrac{4}{3}=\dfrac{4x}{5}-\dfrac{8}{15}$ $\implies y=\dfrac{4x}{5}-\dfrac{8}{15}+\dfrac{4}{3}$ $\implies y=\dfrac{4x}{5}+\dfrac{12}{15}$ Hence, the equation of the tangent line is $y=\dfrac{4x}{5}+\dfrac{12}{15}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.