Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.5 Surface Integrals of Vector Fields - Exercises - Page 970: 37

Answer

(a) See the figure attached (b) We verify: ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\sin u\sin \frac{u}{2}, - \cos \frac{u}{2}} \right)$ (c) We show that ${\bf{N}}\left( {u,0} \right)$ varies continuously, however $S$ is not orientable.

Work Step by Step

(a) We plot the parametrization $G\left( {u,v} \right) = \left( {\left( {1 + v\cos \frac{u}{2}} \right)\cos u,\left( {1 + v\cos \frac{u}{2}} \right)\sin u,v\sin \frac{u}{2}} \right)$ for $0 \le u \le 2\pi $, $ - \frac{1}{2} \le v \le \frac{1}{2}$. This is a Möbius strip as is seen in the figure attached. (b) We have $G\left( {u,v} \right) = \left( {\left( {1 + v\cos \frac{u}{2}} \right)\cos u,\left( {1 + v\cos \frac{u}{2}} \right)\sin u,v\sin \frac{u}{2}} \right)$ Using a computer algebra system, we obtain ${{\bf{T}}_u} = ( - \frac{1}{2}v\cos u\sin \frac{u}{2} - \left( {1 + v\cos \frac{u}{2}} \right)\sin u,$ $ - \frac{1}{2}v\sin u\sin \frac{u}{2} + \left( {1 + v\cos \frac{u}{2}} \right)\cos u,\frac{1}{2}v\cos \frac{u}{2})$ ${{\bf{T}}_v} = \left( {\cos \frac{u}{2}\cos u,\cos \frac{u}{2}\sin u,\sin \frac{u}{2}} \right)$ ${\bf{N}}\left( {u,v} \right) = {{\bf{T}}_u} \times {{\bf{T}}_v} = (\frac{1}{2}\left( { - v\cos \frac{u}{2} + 2\cos u + v\cos \frac{{3u}}{2}} \right)\sin \frac{u}{2},$ $\frac{1}{4}\left( {v + 2\cos \frac{u}{2} + 2v\cos u - 2\cos \frac{{3u}}{2} - v\cos 2u} \right),$ $ - \cos \frac{u}{2}\left( {1 + v\cos \frac{u}{2}} \right))$ Setting $v=0$, we obtain the unit circle $G\left( {u,0} \right) = \left( {\cos u,\sin u,0} \right)$. Thus, ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\left( {\cos \frac{u}{2} - \cos \frac{{3u}}{2}} \right), - \cos \frac{u}{2}} \right)$ We can write $\cos \frac{{3u}}{2} = \cos \left( {u + \frac{u}{2}} \right)$. Using the trigonometric identity: $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ we get $\cos \left( {u + \frac{u}{2}} \right) = \cos u\cos \frac{u}{2} - \sin u\sin \frac{u}{2}$ So, ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\left( {\cos \frac{u}{2} - \cos u\cos \frac{u}{2} + \sin u\sin \frac{u}{2}} \right), - \cos \frac{u}{2}} \right)$ ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\left( {\cos \frac{u}{2}\left( {1 - \cos u} \right) + \sin u\sin \frac{u}{2}} \right), - \cos \frac{u}{2}} \right)$ Using the trigonometric identity: $\cos 2A = 1 - 2{\sin ^2}A$ we get $\cos u = 1 - 2{\sin ^2}\frac{u}{2}$ So, ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\left( {\cos \frac{u}{2}\left( {2{{\sin }^2}\frac{u}{2}} \right) + \sin u\sin \frac{u}{2}} \right), - \cos \frac{u}{2}} \right)$ ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\left( {2\cos \frac{u}{2}{{\sin }^2}\frac{u}{2} + \sin u\sin \frac{u}{2}} \right), - \cos \frac{u}{2}} \right)$ ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\sin \frac{u}{2}\left( {2\cos \frac{u}{2}\sin \frac{u}{2} + \sin u} \right), - \cos \frac{u}{2}} \right)$ Since $\sin u = 2\cos \frac{u}{2}\sin \frac{u}{2}$, so ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\frac{1}{2}\sin \frac{u}{2}\left( {2\sin u} \right), - \cos \frac{u}{2}} \right)$ Finally, the normal vector along this circle is ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\sin u\sin \frac{u}{2}, - \cos \frac{u}{2}} \right)$ (c) From part (b), we obtain the normal vector along the unit circle $G\left( {u,0} \right) = \left( {\cos u,\sin u,0} \right)$: ${\bf{N}}\left( {u,0} \right) = \left( {\cos u\sin \frac{u}{2},\sin u\sin \frac{u}{2}, - \cos \frac{u}{2}} \right)$ Since sine and cosine functions are continues, ${\bf{N}}\left( {u,0} \right)$ varies continuously. However, ${\bf{N}}\left( {0,0} \right) = \left( {0,0, - 1} \right)$ and ${\bf{N}}\left( {2\pi ,0} \right) = \left( {0,0,1} \right)$, we get ${\bf{N}}\left( {2\pi ,0} \right) = - {\bf{N}}\left( {0,0} \right)$. This shows that $S$ is not orientable.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.