Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.5 Surface Integrals of Vector Fields - Exercises - Page 968: 29

Answer

The flow rate through ${\cal T}$: (a) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 1$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 1$

Work Step by Step

(a) The triangular region ${\cal T}$ with vertices $\left( {1,0,0} \right)$, $\left( {0,1,0} \right)$, and $\left( {0,0,1} \right)$ as in Figure 16 has equation: $x+y+z=1$. By writing $y=1-x-z$, we can parametrize ${\cal T}$ by $G\left( {x,z} \right) = \left( {x,1 - x - z,z} \right)$, for $x,y,z \ge 0$ So, ${{\bf{T}}_x} = \left( {1, - 1,0} \right)$ ${{\bf{T}}_z} = \left( {0, - 1,1} \right)$ ${\bf{N}}\left( {x,z} \right) = \left( {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&{ - 1}&0\\ 0&{ - 1}&1 \end{array}} \right) = - {\bf{i}} - {\bf{j}} - {\bf{k}}$ Notice that the normal vector obtained above is in the downward $z$-direction. To use the upward-pointing direction, we set ${\bf{N}}\left( {x,z} \right) = {\bf{i}} + {\bf{j}} + {\bf{k}}$. As can be seen in Figure 16, $x,y,z \ge 0$, so $1 - x - z \ge 0$ $x + z \le 1$ From here we obtain the domain of the triangular region: ${\cal D} = \left\{ {\left( {x,z} \right):0 \le x \le 1,0 \le z \le 1 - x} \right\}$ Since ${\bf{v}} = 2{\bf{k}}$, so ${\bf{v}}\left( {G\left( {x,z} \right)} \right) = \left( {0,0,2} \right)$ ${\bf{v}}\left( {G\left( {x,z} \right)} \right)\cdot{\bf{N}}\left( {x,z} \right) = 2$ We calculate the flow rate through ${\cal T}$ by Eq. (3): $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\left( {G\left( {x,z} \right)} \right)\cdot{\bf{N}}\left( {x,z} \right){\rm{d}}x{\rm{d}}z$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 2\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - x} {\rm{d}}z{\rm{d}}x = 2\mathop \smallint \limits_{x = 0}^1 \left( {z|_0^{1 - x}} \right){\rm{d}}x$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 2\mathop \smallint \limits_{x = 0}^1 \left( {1 - x} \right){\rm{d}}x = 2\left( {x - \frac{1}{2}{x^2}} \right)|_0^1 = 1$ So, the flow rate through ${\cal T}$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{\cal T}} = 1$. (b) The projection of ${\cal T}$ onto the $xy$-plane [the triangle with vertices $\left( {0,0,0} \right)$, $\left( {1,0,0} \right)$, and $\left( {0,1,0} \right)$] can be parametrized by $G\left( {x,y} \right) = \left( {x,y,0} \right)$, for $x,y \ge 0$ As can be seen in Figure 16, in this case the triangular domain is ${\cal D} = \left\{ {\left( {x,y} \right):0 \le x \le 1,0 \le y \le 1 - x} \right\}$ So, ${{\bf{T}}_x} = \left( {1,0,0} \right)$ ${{\bf{T}}_y} = \left( {0,1,0} \right)$ ${\bf{N}}\left( {x,y} \right) = \left( {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&0&0\\ 0&1&0 \end{array}} \right) = {\bf{k}}$ Notice that this normal vector is already upward-pointing. Since ${\bf{v}} = 2{\bf{k}}$, so ${\bf{v}}\left( {G\left( {x,y} \right)} \right) = \left( {0,0,2} \right)$ ${\bf{v}}\left( {G\left( {x,y} \right)} \right)\cdot{\bf{N}}\left( {x,y} \right) = 2$ We calculate the flow rate through ${\cal T}$ by Eq. (3): $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\left( {G\left( {x,y} \right)} \right)\cdot{\bf{N}}\left( {x,y} \right){\rm{d}}x{\rm{d}}y$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 2\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - x} {\rm{d}}y{\rm{d}}x = 2\mathop \smallint \limits_{x = 0}^1 \left( {1 - x} \right){\rm{d}}x$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 2\left( {x - \frac{1}{2}{x^2}} \right)|_0^1 = 1$ So, the flow rate through the projection of ${\cal T}$ onto the $xy$-plane is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal T}^{} {\bf{v}}\cdot{\rm{d}}{\bf{S}} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.