Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Exercises - Page 957: 5

Answer

(a) ${{\bf{T}}_x} = \frac{{\partial G}}{{\partial x}} = \left( {1,0,y} \right)$ ${{\bf{T}}_y} = \frac{{\partial G}}{{\partial y}} = \left( {0,1,x} \right)$ ${\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right) = \left( { - {\rm{y}}, - {\rm{x}}, - 1} \right)$ (b) We verify the following formula and evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt {1 + {x^2} + {y^2}} {\rm{d}}x{\rm{d}}y$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \frac{\pi }{6}\left( {2\sqrt 2 - 1} \right)$ (c) We verify the following formula and evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \mathop \smallint \limits_0^{\pi /2} \mathop \smallint \limits_0^1 \left( {\sin \theta \cos \theta } \right){r^3}\sqrt {1 + {r^2}} {\rm{d}}r{\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \frac{1}{{15}}\left( {1 + \sqrt 2 } \right)$

Work Step by Step

(a) We have $G\left( {x,y} \right) = \left( {x,y,xy} \right)$. So, ${{\bf{T}}_x} = \frac{{\partial G}}{{\partial x}} = \left( {1,0,y} \right)$ ${{\bf{T}}_y} = \frac{{\partial G}}{{\partial y}} = \left( {0,1,x} \right)$ ${\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right) = {{\bf{T}}_x} \times {{\bf{T}}_y} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 1&0&y\\ 0&1&x \end{array}} \right| = - y{\bf{i}} - x{\bf{j}} - {\bf{k}}$ So, ${\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right) = \left( { - {\rm{y}}, - {\rm{x}}, - 1} \right)$. (b) From part (a) we obtain ${\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right) = \left( { - {\rm{y}}, - {\rm{x}}, - 1} \right)$. Hence, $||{\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right)|| = \sqrt {{{\left( { - y} \right)}^2} + {{\left( { - x} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {1 + {x^2} + {y^2}} $ By Eq. (7) of Theorem 1, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} ||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y$ Hence, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt {1 + {x^2} + {y^2}} {\rm{d}}x{\rm{d}}y$ We compute this integral using polar coordinates by defining ${\cal D} = \left\{ {\left( {x,y} \right):{x^2} + {y^2} \le 1,x \ge 0,y \ge 0} \right\}$ in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right):0 \le r \le 1,0 \le \theta \le \frac{\pi }{2}} \right\}$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^1 \sqrt {1 + {r^2}} r{\rm{d}}r{\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \mathop \smallint \limits_{\theta = 0}^{\pi /2} {\rm{d}}\theta \mathop \smallint \limits_{r = 0}^1 \sqrt {1 + {r^2}} r{\rm{d}}r = \frac{\pi }{2}\mathop \smallint \limits_{r = 0}^1 \sqrt {1 + {r^2}} r{\rm{d}}r$ Let $t = 1 + {r^2}$. So, ${\rm{d}}t = 2r{\rm{d}}r$. So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = \frac{\pi }{4}\mathop \smallint \limits_{t = 1}^2 \sqrt t {\rm{d}}t = \frac{\pi }{4}\cdot\frac{2}{3}\left( {{t^{3/2}}|_1^2} \right) = \frac{\pi }{6}\left( {2\sqrt 2 - 1} \right)$ (c) By Eq. (7) of Theorem 1, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} z||{\bf{N}}\left( {x,y} \right)||{\rm{d}}x{\rm{d}}y$ From $G\left( {x,y} \right) = \left( {x,y,xy} \right)$ we obtain $z = xy$. Since in polar coordinates: $x = r\cos \theta $ and $y = r\sin \theta $, so we get $z = {r^2}\cos \theta \sin \theta $. Also, in polar coordinates $||{\bf{N}}\left( {{\rm{x}},{\rm{y}}} \right)|| = \sqrt {1 + {x^2} + {y^2}} $ becomes $||{\bf{N}}\left( {r,{\rm{\theta }}} \right)|| = \sqrt {1 + {r^2}} $ Thus, in polar coordinates we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^2}\cos \theta \sin \theta \sqrt {1 + {r^2}} r{\rm{d}}r{\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \mathop \smallint \limits_0^{\pi /2} \mathop \smallint \limits_0^1 \left( {\sin \theta \cos \theta } \right){r^3}\sqrt {1 + {r^2}} {\rm{d}}r{\rm{d}}\theta $ Next, we evaluate this integral: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \mathop \smallint \limits_0^{\pi /2} \sin \theta \cos \theta {\rm{d}}\theta \mathop \smallint \limits_0^1 {r^3}\sqrt {1 + {r^2}} {\rm{d}}r$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \frac{1}{2}\mathop \smallint \limits_0^{\pi /2} \sin 2\theta {\rm{d}}\theta \mathop \smallint \limits_0^1 {r^3}\sqrt {1 + {r^2}} {\rm{d}}r$ Since the derivative of $\frac{1}{{15}}\left( {3{r^2} - 2} \right){\left( {1 + {r^2}} \right)^{3/2}}$ is ${r^3}\sqrt {1 + {r^2}} $, we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = - \frac{1}{4}\left( {\cos 2\theta |_0^{\pi /2}} \right)\cdot\frac{1}{{15}}\left[ {\left( {3{r^2} - 2} \right){{\left( {1 + {r^2}} \right)}^{3/2}}} \right]_0^1$ $ = - \frac{1}{{60}}\left( { - 2} \right)\left( {2\sqrt 2 + 2} \right)$ $ = \frac{1}{{15}}\left( {\sqrt 2 + 1} \right)$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} z{\rm{d}}S = \frac{1}{{15}}\left( {1 + \sqrt 2 } \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.