Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.2 Line Integrals - Preliminary Questions - Page 931: 4

Answer

(a) $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$ (b) $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 5$

Work Step by Step

(a) If ${\bf{F}}\left( P \right)$ is normal to $C$ at all points $P$ on $C$, then ${\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$ along the curve $C$. Therefore, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 0$ (b) If ${\bf{F}}\left( P \right)$ is a unit vector pointing in the negative direction along the curve, then Eq. (7) becomes $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_C^{} \left( {{\bf{F}}\cdot{\bf{T}}} \right){\rm{d}}s = - \mathop \smallint \limits_C^{} {\rm{d}}s$ where ${\bf{T}}$ is the unit tangent vector on $C$. Since $C$ has length 5, so $\mathop \smallint \limits_C^{} {\rm{d}}s = 5$. Therefore, $\mathop \smallint \limits_C^{} {\bf{F}}\cdot{\rm{d}}{\bf{r}} = - 5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.