Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 906: 43

Answer

We derive formula (8) in Section 16.4: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{\theta = {\theta _1}}^{{\theta _2}} \mathop \smallint \limits_{\phi = {\phi _1}}^{{\phi _2}} \mathop \smallint \limits_{\rho = {\rho _1}\left( {\theta ,\phi } \right)}^{{\rho _2}\left( {\theta ,\phi } \right)} f\left( {\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $

Work Step by Step

In spherical coordinates, the mapping from the region ${{\cal W}_0}$ in $\left( {\rho ,\phi ,\theta } \right)$-space to the region ${\cal W}$ in $\left( {x,y,z} \right)$-space is given by $x = \rho \sin \phi \cos \theta $, ${\ \ \ }$ $y = \rho \sin \phi \sin \theta $, ${\ \ \ }$ $z = \rho \cos \phi $ Let the region description of ${{\cal W}_0}$ be given by ${{\cal W}_0} = \left\{ {\left( {\rho ,\phi ,\theta } \right)|{\rho _1}\left( {\theta ,\phi } \right) \le \rho \le {\rho _2}\left( {\theta ,\phi } \right),{\phi _1} \le \phi \le {\phi _2},{\theta _1} \le \theta \le {\theta _2}} \right\}$ Write the mapping: $G\left( {\rho ,\phi ,\theta } \right) = \left( {\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi } \right)$ Evaluate the Jacobian of $G$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial \rho }}}&{\frac{{\partial x}}{{\partial \phi }}}&{\frac{{\partial x}}{{\partial \theta }}}\\ {\frac{{\partial y}}{{\partial \rho }}}&{\frac{{\partial y}}{{\partial \phi }}}&{\frac{{\partial y}}{{\partial \theta }}}\\ {\frac{{\partial z}}{{\partial \rho }}}&{\frac{{\partial z}}{{\partial \phi }}}&{\frac{{\partial z}}{{\partial \theta }}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {\sin \phi \cos \theta }&{\rho \cos \phi \cos \theta }&{ - \rho \sin \phi \sin \theta }\\ {\sin \phi \sin \theta }&{\rho \cos \phi \sin \theta }&{\rho \sin \phi \cos \theta }\\ {\cos \phi }&{ - \rho \sin \phi }&0 \end{array}} \right|$ $ = \sin \phi \cos \theta \left( {{\rho ^2}{{\sin }^2}\phi \cos \theta } \right)$ ${\ \ }$ $ - \rho \cos \phi \cos \theta \left( { - \rho \cos \phi \sin \phi \cos \theta } \right)$ ${\ \ }$ $ - \rho \sin \phi \sin \theta \left( { - \rho {{\sin }^2}\phi \sin \theta - \rho {{\cos }^2}\phi \sin \theta } \right)$ $ = {\rho ^2}{\sin ^3}\phi {\cos ^2}\theta + {\rho ^2}{\cos ^2}\phi \sin \phi {\cos ^2}\theta + \rho \sin \phi \sin \theta \left( {\rho \sin \theta } \right)$ $ = {\rho ^2}{\sin ^3}\phi {\cos ^2}\theta + {\rho ^2}{\cos ^2}\phi \sin \phi {\cos ^2}\theta + {\rho ^2}\sin \phi {\sin ^2}\theta $ $ = \sin \phi {\cos ^2}\theta \left( {{\rho ^2}{{\sin }^2}\phi + {\rho ^2}{{\cos }^2}\phi } \right) + {\rho ^2}\sin \phi {\sin ^2}\theta $ $ = {\rho ^2}\sin \phi {\cos ^2}\theta + {\rho ^2}\sin \phi$ $ = {\rho ^2}\sin \phi $ So, ${\rm{Jac}}\left( G \right) = {\rho ^2}\sin \phi $. Using the general Change of Variables Formula, Eq. (16), we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal W}_0}}^{} f\left( {x\left( {\rho ,\phi ,\theta } \right),y\left( {\rho ,\phi ,\theta } \right),z\left( {\rho ,\phi ,\theta } \right)} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{\theta = {\theta _1}}^{{\theta _2}} \mathop \smallint \limits_{\phi = {\phi _1}}^{{\phi _2}} \mathop \smallint \limits_{\rho = {\rho _1}\left( {\theta ,\phi } \right)}^{{\rho _2}\left( {\theta ,\phi } \right)} f\left( {\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi } \right){\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ The last integral is formula (8) in Section 16.4.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.