Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 904: 9

Answer

We show that ${G^{ - 1}}\left( {x,y} \right) = \left( {3x - y, - 5x + 2y} \right)$ is the inverse of $G\left( {u,v} \right) = \left( {2u + v,5u + 3v} \right)$.

Work Step by Step

We are given ${G^{ - 1}}\left( {x,y} \right) = \left( {3x - y, - 5x + 2y} \right)$. We show that ${G^{ - 1}}$ is the inverse of $G$. 1. Using $G\left( {u,v} \right) = \left( {2u + v,5u + 3v} \right)$, evaluate $G\left( {{G^{ - 1}}\left( {x,y} \right)} \right)$ $G\left( {{G^{ - 1}}\left( {x,y} \right)} \right) = \left( {2\left( {3x - y} \right) - 5x + 2y,5\left( {3x - y} \right) + 3\left( { - 5x + 2y} \right)} \right)$ $G\left( {{G^{ - 1}}\left( {x,y} \right)} \right) = \left( {x,y} \right)$ 2. Evaluate ${G^{ - 1}}\left( {G\left( {u,v} \right)} \right)$ ${G^{ - 1}}\left( {G\left( {u,v} \right)} \right) = \left( {3\left( {2u + v} \right) - \left( {5u + 3v} \right), - 5\left( {2u + v} \right) + 2\left( {5u + 3v} \right)} \right)$ ${G^{ - 1}}\left( {G\left( {u,v} \right)} \right) = \left( {u,v} \right)$ From the results above, we conclude that ${G^{ - 1}}$ is the inverse of $G$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.