Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Preliminary Questions - Page 879: 2

Answer

(a) the limits of integration are $ - 1 \le z \le 2$, ${\ \ \ }$ $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le r \le 2$ Thus, the triple integral: $\mathop \smallint \limits_{z = - 1}^2 \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^2 f\left( {r,\theta ,z} \right)r{\rm{d}}r{\rm{d}}\theta {\rm{d}}z$ (b) the limits of integration are $ - 2 \le z \le 0$, ${\ \ \ }$ $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le r \le \sqrt {4 - {z^2}} $ Thus, the triple integral: $\mathop \smallint \limits_{z = - 2}^0 \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^{\sqrt {4 - {z^2}} } f\left( {r,\theta ,z} \right)r{\rm{d}}r{\rm{d}}\theta {\rm{d}}z$

Work Step by Step

We have a triple integral in cylindrical coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} f\left( {r,\theta ,z} \right)r{\rm{d}}r{\rm{d}}\theta {\rm{d}}z$ a) The region ${\cal W}$ is defined by ${\cal W} = \left\{ {\left( {x,y,z} \right)|{x^2} + {y^2} \le 4, - 1 \le z \le 2} \right\}$. In cylindrical coordinates, we have $0 \le \theta \le 2\pi $ and ${r^2} = {x^2} + {y^2}$. So, $r \le 2$. Since we need the integration to be in the order ${\rm{d}}r{\rm{d}}\theta {\rm{d}}z$, so the limits of integration are $ - 1 \le z \le 2$, ${\ \ \ }$ $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le r \le 2$ Thus, the triple integral: $\mathop \smallint \limits_{z = - 1}^2 \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^2 f\left( {r,\theta ,z} \right)r{\rm{d}}r{\rm{d}}\theta {\rm{d}}z$ (b) The lower hemisphere of the ball of radius $2$, centered at origin is described by ${\cal W} = \left\{ {\left( {x,y,z} \right)|{x^2} + {y^2} + {z^2} \le 4, - 2 \le z \le 0} \right\}$ In cylindrical coordinates, we have $0 \le \theta \le 2\pi $ and ${r^2} = {x^2} + {y^2}$. The hemisphere becomes ${r^2} + {z^2} \le 4$. Since we need the integration to be in the order ${\rm{d}}r{\rm{d}}\theta {\rm{d}}z$, so the limits of integration are $ - 2 \le z \le 0$, ${\ \ \ }$ $0 \le \theta \le 2\pi $, ${\ \ \ }$ $0 \le r \le \sqrt {4 - {z^2}} $ Thus, the triple integral: $\mathop \smallint \limits_{z = - 2}^0 \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^{\sqrt {4 - {z^2}} } f\left( {r,\theta ,z} \right)r{\rm{d}}r{\rm{d}}\theta {\rm{d}}z$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.