Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 882: 57

Answer

(a) using Fubini’s Theorem, we show that ${I^2} = J$ (b) evaluate $J$ in polar coordinates: $J = \pi $ (c) we prove that $I = \sqrt \pi $

Work Step by Step

(a) We have $I = \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2}}}{\rm{d}}x$. Write $J = \mathop \smallint \limits_{ - \infty }^\infty \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2} - {y^2}}}{\rm{d}}x{\rm{d}}y$. Since ${{\rm{e}}^{ - {x^2} - {y^2}}} = {{\rm{e}}^{ - {x^2}}}{{\rm{e}}^{ - {y^2}}}$, so $J = \mathop \smallint \limits_{ - \infty }^\infty \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2}}}{{\rm{e}}^{ - {y^2}}}{\rm{d}}x{\rm{d}}y$ Using Theorem 3 Fubini's Theorem for the double integral (Section 16.1), we get $J = \mathop \smallint \limits_{ - \infty }^\infty \left( {\mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2}}}{\rm{d}}x} \right){{\rm{e}}^{ - {y^2}}}{\rm{d}}y$ $ = \left( {\mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2}}}{\rm{d}}x} \right)\left( {\mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {y^2}}}{\rm{d}}y} \right)$ Since $I = \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2}}}{\rm{d}}x = \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {y^2}}}{\rm{d}}y$, so $J = {I^2}$. Hence, ${I^2} = J$. (b) We evaluate $J = \mathop \smallint \limits_{ - \infty }^\infty \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2} - {y^2}}}{\rm{d}}x{\rm{d}}y$ in polar coordinates. Write $f\left( {x,y} \right) = {{\rm{e}}^{ - {x^2} - {y^2}}}$. In polar coordinates, $f\left( {r\cos \theta ,r\sin \theta } \right) = {{\rm{e}}^{ - {r^2}}}$. The infinite region in rectangular coordinates: $\left( {x,y} \right) = \left( { - \infty ,\infty } \right) \times \left( { - \infty ,\infty } \right)$ is equivalent to $\left( {r,\theta } \right) = [0,\infty ) \times \left[ {0,2\pi } \right]$ in polar coordinates. Using Eq. (4) of Theorem 1, we have $J = \mathop \smallint \limits_{ - \infty }^\infty \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2} - {y^2}}}{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^\infty r{{\rm{e}}^{ - {r^2}}}{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\mathop {\lim }\limits_{R \to \infty } \mathop \smallint \limits_{r = 0}^R r{{\rm{e}}^{ - {r^2}}}{\rm{d}}r} \right){\rm{d}}\theta $ $ = - \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\mathop {\lim }\limits_{R \to \infty } \left( {{{\rm{e}}^{ - {r^2}}}|_0^R} \right)} \right){\rm{d}}\theta $ $ = - \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\mathop {\lim }\limits_{R \to \infty } \left( {{{\rm{e}}^{ - {R^2}}} - 1} \right)} \right){\rm{d}}\theta $ Since $\mathop {\lim }\limits_{R \to \infty } {{\rm{e}}^{ - {R^2}}} = 0$, so $J = \mathop \smallint \limits_{ - \infty }^\infty \mathop \smallint \limits_{ - \infty }^\infty {{\rm{e}}^{ - {x^2} - {y^2}}}{\rm{d}}x{\rm{d}}y = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \pi $ (c) From part (b) we obtain $J = \pi $. Since ${I^2} = J$, so $I = \sqrt \pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.