Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Preliminary Questions - Page 870: 3

Answer

(a) ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le x} \right\}$ (b) ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le \sqrt {1 - {x^2}} } \right\}$

Work Step by Step

(a) We have $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^x \mathop \smallint \limits_0^{{x^2} + {y^2}} f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. From the order of the integral we obtain the domain ${\cal W}$: $0 \le x \le 1$, ${\ \ \ }$ $0 \le y \le x$, ${\ \ \ }$ $0 \le z \le {x^2} + {y^2}$ Thus, the projection of ${\cal W}$ onto the $xy$-plane is described by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le x} \right\}$ (b) We have $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_2^4 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. From the order of the integral we obtain the domain ${\cal W}$: $0 \le x \le 1$, ${\ \ \ }$ $0 \le y \le \sqrt {1 - {x^2}} $, ${\ \ \ }$ $2 \le z \le 4$ Thus, the projection of ${\cal W}$ onto the $xy$-plane is described by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le \sqrt {1 - {x^2}} } \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.