Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Preliminary Questions - Page 857: 1

Answer

(a) it makes sense (b) it does not make sense (c) it does not make sense (d) it makes sense

Work Step by Step

(a) $\mathop \smallint \limits_0^1 \mathop \smallint \limits_1^x f\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ Writing as an iterated integral, we have $\mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 1}^x f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$. We hold $x$ constant and evaluate the inner integral with respect to $y$. This gives us a function of $x$ alone: $S\left( x \right) = \mathop \smallint \limits_{y = 1}^x f\left( {x,y} \right){\rm{d}}y$ Integrating the resulting function $S\left( x \right)$ with respect to $x$ we obtain the value of the double integral. So, it makes sense. (b) $\mathop \smallint \limits_0^1 \mathop \smallint \limits_1^y f\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ Writing as an iterated integral, we have $\mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 1}^y f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$. The inner integral does not make sense since we integrate with respect to $y$, but the upper limit is $y$. (c) $\mathop \smallint \limits_0^1 \mathop \smallint \limits_x^y f\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ Writing as an iterated integral, we have $\mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = x}^y f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$. The inner integral does not make sense since we integrate with respect to $y$, but the upper limit is $y$. (d) $\mathop \smallint \limits_0^1 \mathop \smallint \limits_x^1 f\left( {x,y} \right){\rm{d}}y{\rm{d}}x$ Writing as an iterated integral, we have $\mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = x}^1 f\left( {x,y} \right){\rm{d}}y} \right){\rm{d}}x$. We hold $x$ constant and evaluate the inner integral with respect to $y$. This gives us a function of $x$ alone: $S\left( x \right) = \mathop \smallint \limits_{y = x}^1 f\left( {x,y} \right){\rm{d}}y$ Integrating the resulting function $S\left( x \right)$ with respect to $x$ we obtain the value of the double integral. So, it makes sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.