Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Preliminary Questions - Page 788: 2

Answer

We use the definition of differentiable to define the local linearity for functions of two variables.

Work Step by Step

Using the definition of differentiable, we define the local linearity for functions of two variables: Definition. A function of two variables $f\left( {x,y} \right)$ is locally linear if $f\left( {x,y} \right) = L\left( {x,y} \right) + e\left( {x,y} \right)$ where $e\left( {x,y} \right)$ satisfies $\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {a,b} \right)} \frac{{e\left( {x,y} \right)}}{{\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} }} = 0$ and $L\left( {x,y} \right) = f\left( {a,b} \right) + {f_x}\left( {a,b} \right)\left( {x - a} \right) + {f_y}\left( {a,b} \right)\left( {y - b} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.