Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 744: 21

Answer

We show that the total distance traveled before hitting the ground is $\left( {\frac{{{v_0}^2}}{g}} \right)\sin 2\theta $ So, the maximum distance is attained if $\theta = 45^\circ $.

Work Step by Step

We have the initial velocity ${\bf{v}}\left( 0 \right) = \left( {{v_0}\cos \theta ,{v_0}\sin \theta } \right)$. Let the initial position be ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$. The only force that acts on the projectile is the gravitational force. So, the acceleration due to gravity is ${\bf{a}}\left( t \right) = - g{\bf{j}}$ $m/{s^2}$. 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {0, - g} \right){\rm{d}}t = \left( {0, - gt} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {{v_0}\cos \theta ,{v_0}\sin \theta } \right)$ gives $\left( {{v_0}\cos \theta ,{v_0}\sin \theta } \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = \left( {{v_0}\cos \theta ,{v_0}\sin \theta } \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {0, - gt} \right) + \left( {{v_0}\cos \theta ,{v_0}\sin \theta } \right)$ ${\bf{v}}\left( t \right) = \left( {{v_0}\cos \theta ,{v_0}\sin \theta - gt} \right)$ 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {{v_0}\cos \theta ,{v_0}\sin \theta - gt} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {{v_0}t\cos \theta ,{v_0}t\sin \theta - \frac{1}{2}g{t^2}} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {0,0} \right)$ Thus, ${\bf{r}}\left( t \right) = \left( {{v_0}t\cos \theta ,{v_0}t\sin \theta - \frac{1}{2}g{t^2}} \right)$ 3. Solve for $\theta$ From previous result, we obtain the position vector: ${\bf{r}}\left( t \right) = \left( {{v_0}t\cos \theta ,{v_0}t\sin \theta - \frac{1}{2}g{t^2}} \right)$ The projectile hits the ground if the $y$-component of ${\bf{r}}\left( t \right)$ is zero. Thus, ${v_0}t\sin \theta - \frac{1}{2}g{t^2} = 0$ $t\left( {{v_0}\sin \theta - \frac{1}{2}gt} \right) = 0$ The solutions are $t=0$ and $t = \frac{{2{v_0}\sin \theta }}{g}$. The first solution corresponds to the time when the projectile is fired. So, we take the second solution. Substituting it in the $x$-component of ${\bf{r}}\left( t \right)$ we get the total distance: total distance $ = {v_0}\left( {\frac{{2{v_0}\sin \theta }}{g}} \right)\cos \theta $ total distance $ = \left( {\frac{{{v_0}^2}}{g}} \right)2\sin \theta \cos \theta $ total distance $ = \left( {\frac{{{v_0}^2}}{g}} \right)\sin 2\theta $ Since $\sin 2\theta \le 1$, the maximum distance is attained if $2\theta = 90^\circ $, that is if $\theta = 45^\circ $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.