Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.5 Planes in 3-Space - Exercises - Page 686: 74

Answer

$P = \left( { - \frac{{18}}{{17}},3, - \frac{{13}}{{17}}} \right)$

Work Step by Step

By Theorem 1, the plane $x-4z=2$ has normal vector ${\bf{n}} = \left( {1,0, - 4} \right)$. By Eq. (7) of Exercise 71, the point $P$ on the plane closest to $Q$ is determined by the equation: $\overrightarrow {OP} = \overrightarrow {OQ} + \left( {\frac{{d - \overrightarrow {OQ} \cdot{\bf{n}}}}{{{\bf{n}}\cdot{\bf{n}}}}} \right){\bf{n}}$ We have $\overrightarrow {OQ} = Q - O = \left( { - 1,3, - 1} \right)$. Substituting the corresponding values in Eq. (7) gives $\overrightarrow {OP} = \left( { - 1,3, - 1} \right) + \left( {\frac{{2 - \left( { - 1,3, - 1} \right)\cdot\left( {1,0, - 4} \right)}}{{\left( {1,0, - 4} \right)\cdot\left( {1,0, - 4} \right)}}} \right)\left( {1,0, - 4} \right)$ $\overrightarrow {OP} = \left( { - 1,3, - 1} \right) + \left( {\frac{{2 - 3}}{{17}}} \right)\left( {1,0, - 4} \right)$ $\overrightarrow {OP} = \left( { - \frac{{18}}{{17}},3, - \frac{{13}}{{17}}} \right)$ Thus, the point $P = \left( { - \frac{{18}}{{17}},3, - \frac{{13}}{{17}}} \right)$ is nearest to $Q = \left( { - 1,3, - 1} \right)$ on the plane $x-4z=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.