Answer
$$16\sqrt{13}$$
Work Step by Step
\begin{aligned}
s &=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
&=\int_{0}^{4} \sqrt{16 t^{2}+36 t^{2}} d t \\
&=\int_{0}^{4} \sqrt{52 t^{2}} d t \\
&=\int_{0}^{4} 2 \sqrt{13} t d t \\
&=\left.2 \sqrt{13} \cdot \frac{t^{2}}{2}\right|_{0} ^{4}\\
&=16\sqrt{13}
\end{aligned}