Answer
$$\frac{7}{15}$$
Work Step by Step
Given $$\frac{7}{8}-\frac{49}{64}+\frac{343}{512}-\frac{2401}{4096}+\cdots=\sum_{n=0}^{n=\infty} \frac{7}{8}\left(\frac{-7}{8}\right)^{n} $$
Since the series is a geometric series with $|r|= \frac{7}{8}<1$, then the series converges and has the sum
\begin{align*}
S &=\frac{a_1}{1-r} \\
&=\frac{\frac{7}{8}}{1-\frac{-7}{8}} \\
&=\frac{7}{15}
\end{align*}