Answer
$$\frac{59049}{3328}$$
Work Step by Step
Given
$$ \sum_{n=-4}^{n=\infty} \left(\frac{-4}{9}\right)^{n}$$
Since the series is a geometric series with $|r|=\left|\frac{-4}{9}\right|<1$ , then the series converges and has the sum
\begin{align*}
S&= \frac{a_1}{1-r}\\
&=\frac{ \left(\frac{-4}{9}\right)^{-4} }{1-\frac{-4}{9}}\\
&=\frac{59049}{3328}
\end{align*}