Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.7 Exercises - Page 644: 15

Answer

$f(x) = 1 - \frac{x}{2} + \frac{1}{4 \times 2!} x^{2} - \frac{1}{8 \times 3!} x^{3} + \frac{1}{16 \times 4!}x^{4}$

Work Step by Step

$f(x) = e^{\frac{-x}{2}}$ $f(x) = f(0) + f'(0)x + \frac{f^{''}(0)}{2!} x^{2} + \frac{f^{'''}(0)}{3!} x^{3} + ... + \frac{f^{n}(0)}{n!}x^{n}$ $f(0) = e^{0} = 1$ $f^{'}(0) = \frac{-1}{2}e^{0} = \frac{-1}{2}$ $f^{''}(0) = \frac{1}{4}e^{0} = \frac{1}{4}$ $f^{'''}(0) = \frac{-1}{8}e^{0} = \frac{-1}{8}$ $f^{''''}(0) = \frac{1}{16}e^{0} = \frac{1}{16}$ Maclaurin polynomial for $n=4$ is $f(x) = 1 - \frac{x}{2} + \frac{1}{4 \times 2!} x^{2} - \frac{1}{8 \times 3!} x^{3} + \frac{1}{16 \times 4!}x^{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.