Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.2 Exercises - Page 604: 101

Answer

Proved.

Work Step by Step

If $r_1$ is the common ratio with $|r_1|<1$ and $a_1$ is the first term of geometric series, then $\sum^{\infty}_{n=1}a_1r_1^n=\frac{a_1}{1-r_1}$ if $|r_1|<1$ For $\frac{1}{r}+\frac{1}{r^2}+\frac{1}{r^3}+\frac{1}{r^4}+...$ $a_1=\frac{1}{r}$ and $r_1=\frac{1}{r}$ Therefore, $\sum^{\infty}_{n=1}(\frac{1}{r})(\frac{1}{r})^n=\frac{\frac{1}{r}}{1-\frac{1}{r}}$ if $|\frac{1}{r}|<1$ $\Rightarrow \frac{1}{r}+\frac{1}{r^2}+\frac{1}{r^3}+\frac{1}{r^4}+...=\frac{1}{r-1}$ if $|r|>0$ since $\frac{a}{b}<1\Rightarrow \frac{b}{a}>1 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.