Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.7 Exercises - Page 567: 101

Answer

$c=\frac{4}{3}$

Work Step by Step

$\lim\limits_{x \to 0}\frac{4x-2sin(2x)}{2x^{3}}$=$\frac{0}{0}$ $\lim\limits_{x \to 0}\frac{4-4cos(2x)}{6x^{2}}$=$\frac{0}{0}$ $\lim\limits_{x \to 0}\frac{8sin(2x)}{12x}$=$\frac{0}{0}$ $\lim\limits_{x \to 0}\frac{16cos(2x)}{12}$=$\frac{16cos(2(0))}{12}$=$\frac{16}{12}$=$\frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.